AIAS =PrL

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

CS460
Systems for Data Management and
Data Science

Prof. Anastasia Ailamaki
Prof. Anne-Marie Kermarrec

Introduction and Storage Management
February 17, 2025

CS460 1

Data: an extremely valuable resource

themselves.

= Tim Becners-Lee

Inventor of the Worls Wide Web

e

Data is a precious thing and will
last longer than the systems

into insight.

The goal is to turn data
into information, and information

Information is
the oil of the 21st century,
and analytics is

the combustion engine.”

Feter Sonderpaard

{ Garirmr Remarch)

CS460

The
Economist

b it e

Crunch time in France

Ten years on: banking after the crisis
South Korea's unfinished revolution
Biology, but without the cells

The world's most
valuable resource

What is data?

Organized, Processed

Data > M $

Facts (_Processed / .

> Information

Has meaning

Basis for reasoning/discussion/ e Relevant to the
calculation problem

Useful or irrelevant or e Actionable — leads to a
redundant solution

Must be processed to be y

meaningful Knowledge

Wisdom

What is a database?

e Alarge, integrated, structured collection of data
e Usually intended to model some real-world enterprise
e Example: University

— Courses .

_ Students Entities

— Professors

~ Enrollment Relationships

— Teaching

What is a Database Management System
(DBMS)?

e A software system designed to store, manage, and facilitate access to databases

e DBMS = Interrelated data (database) + set of programs to access it (software)

What does a DBMS do?

Protects data

. Thousands of queries / 24X7 Physical data
from failures: updates per second availability independence,
h/w, s/w, declarative high-level
power;

= query languages
malicious users

Provides efficient, reliable, convenient, and
safe multi-user storage of and access to
massive amounts of persistent data.

Concurrency
control

Extremely large Data outlives the programs
(often Exabytes every day) that operate on it

Data-intensive applications & systems AﬁAS

e Data-intensive vs compute-intensive
e Volume, complexity, velocity, volatility, variety...

« Hardware/software codesign
— Optimizing for memory hierarchy, and hardware accelerators

e Scientific applications

) e® -
1 e &
EEE. . “
Lmin“ Tim ee. &
oL vedmin |
Data Analytics Transaction Stream Processing

Processing ;

Data science

A data-driven approach to problem solving by analyzing and
exploring large volumes of possibly multi-modal data.

It involves collecting, preparing, managing, processing, analyzing, and

explaining the data and analysis results.

Data science is interdisciplinary (statistics, computer science,
information science, mathematics, social science, visualization, etc.).

CS460

Debunking some myths

e Data Science <> Big Data

« Data science <> Machine Learning

=PrL

LET'S SOLVE THIS PROBLEM BY
USING THE BIG DATA NONE
OF US HAVE THE SLIGHTEST
IDEA WHATTO DO WITH

® marketoonist.com

Related but not the same!

CS460

=PrL

Data science’s raison d’existence: its applications

Fraud and Risk detection

Real
Time

Recommendation
Systems Scalability

Digital advertisement Smart cities

Failure
Resilience

Finance

Security/

Image and speech Privacy

recognition

Augmented reality

10

The many faces of data science

Data engineering

Big data management
Data preparation
Large-scale deployment

Data Security / Privacy

Data integrity
Differential privacy
Cryptography

CS460

Data analytics

Data exploration (mining)
Models and algorithms
(ML)

Visualizations

Data Ethics

Biases (data and
algorithms)
Impact on society
Regulations

11

=PrL

Data science software stack

CS460 landscape

Data Processing
Graph Data Structured
(Pregel, GraphLlab, Data
X-Streem, Chaos) (Spark SQL)

. Quer Batch Data Streaming Data
Gossip Protocols Executitnn (Map Reduce, (Storm, Naiad, Flink, Spark
Dryad, Spark) Streaming Google Data Flow)

Machine
Learning

Transaction
Management

Consistency protocols Data Storage
CAP Theorem
Storage S NoSQL DB Distributed
' ! Distributed :
Hierarchies (Dynamo Messaging

& Data AR S Big Table systems
Distributed/decentralized Layout (GFS) Cassandra) (Kafka)

systems

Ressource Management & Optimization

Query optimization Scheduling (Mesos, YARN)

Week Date Topic

1 17/02 Introduction and Storage hierarchy
2 24/02 Query execution

3 03/03 Query Optimization

4 10/03 Transactions

5 17/03 Distributed transactions

6 24/03 Distributed Query Execution

7 31/03 Midterm exam (not graded)

8 7/04 Gossip Protocols

9 14/04 Distributed hash tables + consistency models
10 28/04 Key-value stores + CAP theorem

11 5/05 Scheduling

12 12/05 Stream Processing

13 12/05 Distributed Learning Systems

14 19/05 Invited Industry Lecture

CS460

13

CS460 learning experience

Lecture

Learn the internals of
a (distributed)
platform for data
science

Breadth coverage

|

-
>3
kS
K,

Exercises

Put the course in
practice

Programming
skills

Exam preparation

Background for
the project

=PrL

Project

Acquaintance with a real
platform

Going in depth

Intended as a practical
work

May not be related to
every part of the course

TA/AE Team

Martijn . _ : :
(head TA) Milos (TA) Diana (TA) Hamish (TA) Alex (AE) Elif (AE)

15

Course logistics

e CS460 Moodle: all the material, updated every week

e Schedule
e Lecture (Monday 2:15-4 pm) — CE12

e Exercises (Monday 4:15-6 pm) — CE12 (week 1: project overview)

e |Individual Project (Tuesday 11-1pm: indicative time slot to work on the project)

e Grading scheme

e Project (40%) (presentation at 16:15 today)
e Midterm exam (not graded, highly recommended, covers weeks 1-5)

e Final exam (60%)

CS460 16

Data moves to the Cloud

Where is the data stored?

/

—

/

Consumer %

= Enterprise %

= Public Cloud %

CS460

In 2021, cloud workloads
represent 94% of all IT
workload worldwide

FB spent 16Bn S on datacenter in 2019
Google spent 13Bn S datacenter in 2019

Hyperscale datacenters (fitting more IT in
less space, scale hugely and quickly to
increasing demand (elasticity, computing
ability, memory, networking
infrastructure, disaggregated storage)
have been growing at a historic rate over
the past 10 years

19

Data size (ZB)

., HOW much data are we talking about?

180
160
140
120
100
80
60
40
20
0

A0 o\

OV g0\ gV

OV o\

OV o\

v

S

N\°

S

OV ®

o N qp’bg rLs’L'\ qp’ﬂ (LQ’L"’ rLQ(Lb‘ ,LQ’L‘D

v

Data Age 2025, data from IDC Global DataSphere, Nov 2018

Scalability

e What if your system grows from 50,000 concurrent users to 10M
e Scalability: ability to cope with increasing load

e Load: number of requests/second, ratio of reads/writes in a
database, number of simultaneously active users...

e Performance metrics

e Latency/Response time: duration for a request to be handled
® Average versus percentiles
® The 95th: response time at which 95% of requests are faster than that threshold

¢ Tail latency: refers to high latencies that clients see fairly infrequently

CS460 21

Today’s topic

Data science software stack

Data Processing
Graph Data Structured
Pregel, GraphLab, Data
X-Streem, Chaos Spark SQL

Machine
Learning

Transaction
Management

. Que Batch Data Streaming Data
Gossip Protocols Y Map Reduce Storm, Naiad, Flink, Spark
Execution ¢ .
Dryad, Spark Streaming Google Data Flow

Consistency protocols Data Storage

CAP Theorem Storage S NoSQL DB Distributed
. . Distributed :
Hierarchies Dynamo Messging

2 Data File Systems

. . - . Big Table systems
Distributed/Decentralized Layout (GFS) Cassandra Kafka
systems

Ressource Management & Optimization

Query optimization Scheduling (Mesos, YARN)

22

Memory

Disk 1|

(Simplified) DBMS Architecture

Web

Transaction

Manager \

Files and Access Methods /

Buffer Management

Storage Management

Data
S~
N
v

Application
Front Ends SQL
Forms \.L/ Interface
SQL Commands
Parser + Optimizer +
Plan Execution
Recovery
Manager

23

Today’s topic

Buffer Management

Storage Management

Data
SNl

SN—
v

24

Storage Management: Outline

— Storage Technologies
— File Storage
— Buffer Management (refresher)

— Page Layout
e NSM, aka row store

e DSM, aka column store
e PAX, hybrid

25

Storage Hierarchy

CPU
Registers

Faster
Smaller

vt
1

1

it
Slower
Network Storage Larger

26

Storage layer access times

CPU Faster
Registers
It Smaller
Layers often Lliz?‘i :: CPU Caches
disaggregated =2 '
access times vary! ‘1
i 100 ns
150, eeé""n.s"
10,000, 000 né
Slower
~30,000,000 n Network Storage La rger

27

o
.....

=PrL
A surprisingly simple model for cache organization

CPU Core Average access time (AAT)=

: Hit time +
B ((miss rate) X (miss penalty))
Multi-level L1 Cache
cache —
Hit time ;. < Hit timeqrory

\ 4

L3 Cache (Unified) AAT che<< AAT emory

Main Memory

28

Non-Volatile Memory vs Solid-State Drive

_ORAM
S50
_ORAM
VM

Goals: data persists after power-cycle + reduce random/sequential access gap
* No seek/rotational delays

Like DRAM, low-latency loads and stores

Like SSD, persistent writes and high density

Byte-addressable

SSD technology uses non-volatile flash chips
Package multiple flash chips into a single closure
SSD controller
Embedded processor that executes firmware-level software
Bridges Flash chips to the SSD input/output interfaces
Block-addressable

DRAM

VM

SSD

DRAM

NVM

SSD

29

Storage Management: Outline

— Storage Technologies
— File Storage
— Buffer Management (refresher)

— Page Layout
e NSM, aka row store

e DSM, aka column store
e PAX, hybrid

30

From tables/rows to files/pages

Page
Students 8

mmm
1elas

50000 Dave dave@cs 19

53666 Jones jones@cs 18 3.4
53688 Smith smit@ee 18 3.2

_
File
Storage Pages

GOAL: DBMS must efficiently manage datasets larger than available memory =

File Storage

The DBMS stores a database as one or more files on disk.

The Storage Manager is responsible for maintaining a database’s

files and organizes them as a collection of pages.

— Tracks data read/written to pages
— Tracks available space

32

Alternative File Organizations

The Storage Manager is responsible for maintaining a database’s files
and organizes them as a collection of pages.

Many alternatives exist, each good for some situations, and not so
good in others. Indicatively:

e Heap files: Best when typical access is a full file scan

e Sorted Files: Best for retrieval in an order, or for retrieving a ‘range’

e Log-structured Files: Best for very fast insertions/deletions/updates

33

Heap (Unordered) Files

e Simplest file structure
— contains records in no particular order
— Need to be able to scan, search based on rid

e As file grows and shrinks, disk pages are allocated and de-

allocated.
— Need to manage free space

Heap File Implemented Using Lists
TN N N Y

Data Data Data

Page Page - Page

Header PN
Page N NN Y

Full Pages

ISata Data Data ,
, Pages with
Page Page Page . S
N N N eE SPate

e <Heap file name, header page id> stored somewhere
e Each page contains 2 ‘pointers’ plus data.

e Manage free pages using free list
— What if most pages have some space?

Heap File Using a Page Directory

Data
Header Page 1
Page
Data
Data
DIRECTORY Page'N

e The directory is a collection of pages
— linked list implementation is just one alternative.

e The entry for a page can include the number of free bytes on the page.
— Much smaller than linked list of all HF pages!

Log-structured files

Instead of storing tuples in pages, the DBMS only appends log
records. Blocks are never modified.

For workloads with many small files, a traditional file system
needs many small synchronous random writes, whereas a log-
structured file system does few large asynchronous sequential

transfers.

37

Writing to log-structured files

— Inserts: Store the entire tuple
— Deletes: Mark tuple as deleted
— Updates: Store delta of just the attributes that were modified

Log File

INSERT id=1,val=a
INSERT id=2,val=Db
DELETE id=4
INSERT id=3,val=c
UPDATE val=X (id=3)

38

Reading from log-structured files

— DBMS scans log backwards, and “recreates” the tuple

Log File

INSERT id=1,val=a
INSERT id=2,val=Db
DELETE id=4
INSERT id=3,val=c
UPDATE val=X (id=3)

39

Reading from log-structured files

— DBMS scans log backwards, and “recreates” the tuple
— Build indexes to allow jumps in the log
— Periodically compact the log

Log File
INSERT id=1,val=a
=1 INSERT id=2,val=b
93 DELETE id=4
INSERT id=3,val=c
id=3

UPDATE val=X (id=3)

40

Net-net of log-structured files

e Advantages
— High performance for inserts, deletes and updates

— Ultra-fast recovery from failures
— Good for SSD as writes are naturally leveled

e Disadvantages

— Unpredictable performance in sequential reads
— Need a lot of free space

— Affects garbage collection (need for compaction)
— Data can be lost if written but not checkpointed

e DBMS needs to address two issues

— How to reconstruct tuples from logs efficiently
— How to manage disk space with ever-growing logs

41

Storage Management: Outline

— Storage Technologies
— File Storage
— Buffer Management (refresher)

— Page Layout
e NSM, aka row store

e DSM, aka column store
e PAX, hybrid

42

Can’t we just use the OS buffering?

e Layers of abstraction are good ... but:
— Unfortunately, OS often gets in the way of DBMS

e DBMS needs to do things “its own way”
— Specialized prefetching

— Control over buffer replacement policy

e LRU not always best (sometimes worst!!)
— Control over thread/process scheduling

e “Convoy problem”

— Arises when OS scheduling conflicts with DBMS locking

— Control over flushing data to disk

e WAL protocol requires flushing log entries to disk

43

Buffer Management in a DBMS

Page Requests from Higher Levels

BUFFER POOL MAIN MEMORY

N

disk page

St

free frame

choice of frame dictated
DISK Db by replacement policy

e Data must be in RAM for DBMS to operate on it!
e Buffer manager hides the fact that not all data is in RAM (just like hardware cache
policies hide the fact that not all data is in the caches)

44

When a Page is Requested ...

e Buffer pool information table contains:
<frame#, pageid, pin_count, dirty>

e |f requested page is not in pool:

— Choose a frame for replacement
(only un-pinned pages are candidates)

— If frame is “dirty”, write it to disk
— Read requested page into chosen frame

e Pin the page and return its address.

* If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

45

More on Buffer Management

e Requester of page must unpin it, and indicate whether page

has been modified:
— dirty bit is used for this.

e Page in pool may be requested many times,

— a pin count is used. A page is a candidate for replacement iff pin count =0
(“unpinned)

e CC & recovery may entail additional I/O when a frame is
chosen for replacement

46

Buffer Replacement Policy

e Frame is chosen for replacement by a replacement policy:
— Least-recently-used (LRU), MRU, Clock, etc.

e Policy can have big impact on # of I/O’s; depends on the access
pattern.

47

LRU Replacement Policy
e |east Recently Used (LRU)

— for each page in buffer pool, keep track of time last unpinned
— replace the frame which has the oldest (earliest) time
— very common policy: intuitive and simple

e Problem: Sequential flooding

— LRU + repeated sequential scans.
— # buffer frames < # pages in file means each page request causes an I/0. MRU
much better in this situation (but not in all situations, of course).

48

Sequential Flooding — Illlustration

of file ...

LRU: BUFFER POOL MRU: BUFFER POOL

1| 2 3 1| 2 3 4

51 2 3 1| 2 3 5

5] 6 3 1| 2 3 6

5| 6 1 1 [2 3 6

5| 6 1 1| 2 3 6

—
1 3 5 Repeated scan

49

“Clock” Replacement Policy

An approximation of LRU.
Arrange frames into a cycle, store
one “reference bit” per frame D(0)
When pin count goes to O, reference bit set on.
When replacement necessary:
do {
1f (pincount == 0 && ref bit 1s off)
choose current page for replacement;
else 1f (pincount == 0 && ref bit 1s on)

turn off ref bit;
advance current frame;
} unti1l a page 1s chosen for replacement;

50

Storage Management: Outline

— Storage Technologies
— File Storage
— Buffer Management (refresher, slides on moodle)

— Page Layout
e NSM, aka row store

e DSM, aka column store
e PAX, hybrid

51

The N-ary Storage Model

Page = collection of slots

Each slot stores one record
— Record identifier: <page_id, slot_ number>
— Option 2: <unig> -> <page_id, slot_number>

Page format should support
— Fast searching, inserting, deleting

Page format depends on record format
— Fixed-Length
— Variable-Length

PAGE HEADER

RHI | U862

Jane | 30 LE[—IE 7655 | John
45 LHHE 3589 [Jim E[IJ HH4
5523 | Susan 32
. A ."

N, Y /
A \ /
A l.ILIIr
Y
'l.'% -'II.
WA
A A
=

52

Record Formats: Fixed-Length

F1 F2 F3 F4

~— L1 — L2 L3 L4

| N\

Base address (B) Address = B+L1+L2

e Schema is stored in system catalog

— Number of fields is fixed for all records of a table
— Domain is fixed for all records of a table

e Each field has fixed length
e Finding it field is done via arithmetic.

53

Page Format: Fixed-Length Records

Packed Unpacked, Bitmap
Slot 1 Slot 1
Slot 2 Slot 2
Slot 3
o 0 0 Free

Space

Slot N J L
Slot M

N p : ol 1] M
JA\I\Haeg;er/Z/ M |32| 1|JA

Number of slots

Number of records

e Record id =<page id, slot #>

e |In the packed case, moving records for free space management changes
rid; maybe unacceptable.

54

Record Formats: Variable-Length

F1 F2 F3 F4
S S S S
Fields Delimited by Special Symbols
F1 F2 F3 F4

e

Array of Field Offsets

e Array of field offsets is typically superior
— Direct access to fields
— Clean way of handling NULL values

55

Page Format: Variable-Length Records

D at a DATA AREA PAGE i

rid = (i,N)

» offset of record from
| 4 start of data area

rid = (i,2) \
| '\ Record with rid = (i,1)

\
length = 24

Pointer to s
of free space
/

\

FREE SPACE

Slot Array

62 o0OO * 16/ 24| N |4

N 2 1, T
Number of entries
SLOT DIRECTORY in slot directory

e Need to move records in a page
e Allocation/deletion must find/release free space

e Maintain slot directory with <record offset, record length> pairs
e Records can move on page without changing rid
e Useful for freely moving fixed-length records (ex: sorting)

56

Variable-Length Records: Issues

e If a field grows and no longer fits?
— shift all subsequent fields

e If record no longer fits in page?
— Move a record to another page after modification

e What if record size > page size?
— Limit allowed record size

57

Storage Management: Outline

— Storage Technologies
— File Storage
— Buffer Management (refresher)

— Page Layout
e NSM, aka row store

e DSM, aka column store
e PAX, hybrid

58

Decomposition Storage Model (DSM)

In-Memory/HANA Enterprise Data Management | SAP UA Conference | March 23rd 2012 | Dr. Alexander Zeier, MIT

Document Document Sold-To Stat Sales
Number Date Party oliier e Organization | ~
Gemany
05769214 2009-10-01 584 10.24 CLOSED il
95769215 | 2009-10-01 1215 12435 CLOSED Gg’;&?:y
05770216 2000-10-21 584 47 11 OPEN Gg"“a"y
erlin
Germany
QsK779217 2009-10-21 454 21.20 OPEN Frankfurt
Row Q g Column
Store Store
Doc Doc Sold- Value Sales

Row Num Date To Status Org

1 Il
Row

2
Row

3
Row

4

59

DSM Page Format

PAGE HEADER

1] 0962

2176583

3859 |4

5523

PAGE HEADER

1| Jane

2| John| 3

Jim |4

Susan

PAGE HEADER

1302

4513

20

4

52

R1
RID | SSN
1 0962
2 7658 R2
3 3859 RID | Name
4 5523 1 Jane
5 9743 2 John R3
6 0618 3 Jim RID | Age
+ Susan 1 30
5 Leon 2 45
6 Dan 3 20
4 52
5 43
6 37

sub-relation R1

sub-relation R2

sub-relation R3

Decompose a relational table to sub-tables per attribute

60

Column store (DSM): example

e Columns stored in pages
— Denoted with different colors

e Fach column can be accessed
individually

— Pages loaded only for the desired attributes

Three different files: tbll.name tbll.age tbll.dept61

tblll
[
Name Age Dept
John 22 HR
Jack 19 HR
Jane 37 IT
George 43 FIN
Wolf 51 IT
Maria 23 HR
Andy 56 FIN
Ross 22 SALES
Jack 63 FIN

Column store (DSM) Properties

Pros

e Saves |0 by bringing only the relevant attributes
e (Very) memory- compressing columns is typically easier

Cons
e \Writes more expensive

e Need tuple stitching at some point (Tuple Reconstruction)
e Indexed selection with low selectivities

e Queries that require all or most of the attributes

62

Compression

e Lossless compression

e |O reduction implies less CPU wait time

— Introduces small additional CPU load on otherwise idle CPU

e Run-length encoding (RLE): a lossless compression algorithm
— sequences of redundant data are stored as a single data value

Dept

HR

HR

SALES

IT

IT

=)

CDept

(2 x HR)

(1 x SALES)

(2 xIT)

63

Compression (2)

e Bit-vector encoding: compact and constant-time test
— Useful when we have categorical data & Useful when a few distinct values

— One bit vector for each distinct value
— Vector length = # distinct elements

Dept

HR

HR

SALES

IT

IT

—

HR SALES IT
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

64

Compression (3)

e Dictionary encoding
— Replace long values (e.g., strings) with integers

Dept

HR

IT

HR

SALES

HR

FINANCE

FINANCE

IT

CDept

Dictionary 1

1 [HR 2

2 [T 1

3 | SALES 3

4 | FINANCE 1
I | ¢
4

2

65

Compression (4)

e Frequency partitioning
— Reorganize each column to reduce entropy at each page

Dept
HR
IT

FIN Column
FIN reorganization
HR

HR
FIN
HR
SALES

O

(D
©

~+

I
X

I
X

I
X

I
o)

IT

FIN

FIN

FIN

O I N]|P|W[IN|[O]JO|OUI |

SALES

Dictionary-
based
compression
—————>
with per-page
dictionaries

CDept

O|N|D|lw ||| |-
R IN(NINN|[R[R|R[R]|R

Smaller dictionaries improve

- memory requirements
- cache utilization
- effectiveness of run-length encoding

66

Operators over compressed data

No need to decompress for most query operators

e Dictionary encoding => integer comparisons faster than string

comparisons

SELECT name FROM tbl WHERE DEPT=“HR”
VS
SELECT name FROM tbl WHERE CDEPT=1

— Per-page dictionaries?

e Bit-vector encoding => find the 1’s directly from the bit vectors
SELECT COUNT(*) FROM tbl WHERE CDEPT=“HR”

e Run-length encoding => batch processing (aggregation)

DSM: Writes

e Row insertions/deletions
— Affects all columns
— Multiple 1/Os
— Complicated transactions

e Deletes/updates: Implicit
— Mark record as deleted!

tblll
Name Age Dept
John 22 HR
Jack 19 HR
Jane 37 IT

e Massive data loading: Write-optimized storage (WOS)

68

Write-optimized storage

Filesystem storage: 3 different

In-memory buffer (fixed-size)

Name Age

Dept

files, possibly compressed!

* *>
lll

Batch-loading:

o <
o <

o <

ill, 24, IT>
ames, 56, FIN>
essica, 34, IT>

Name Age Dept
John 22 HR
Jack 19 HR
Jane 37 IT
Jake 43 FIN
Jill 24 IT
James 56 FIN
Jessica 34 IT

Write rows in-memory, flush columns to disk

69

Storage Management: Outline

— Storage Technologies
— File Storage
— Buffer Management (refresher)

— Page Layout
e NSM, aka row store

e DSM, aka column store
e PAX, hybrid

70

Partition Attributes Across (PAX)

Decompose a slotted-page
internally in mini-pages per
attribute

v’ Cache-friendly

v’ Compatible with slotted-pages
v’ Retain NSM 1/0O pattern

v reduces column “stitching” delay
v No per-column tuple ids

v’ Brings only relevant attributes to
cache

attributes free space

records
i \L attr. sizes

PR

L

pid W[3]2[4]v |4

f

0962 | 7658

—» Jane John

presence bits |1]1

v-offsets

presence bits

}page header

}f—minipage

: }V—minipage
j_.-

}F-minipage

71

PAX Americana

e DSM most suitable for analytical queries, but required major
rewrites of existing DBMS, and penalized transactions a lot.

e PAX replaces NSM in-place
— MonetDB/X100 (Vectorwise)
— Oracle Exadata, Snowflake, Google Spanner, etc.

— Data lake-oriented file formats

e Parquet
e Arrow

72

Conclusion

e One size does not fit all

Each storage technology favors a different storage layout
Different workloads require different storage layouts and data
access methods

e To optimize use of resources and algorithms, we need to know
the workload (unrealistic)

New way of building systems: JIT/code generation/virtualization

73

Next week

Dr. Angelos Anadiotis will lecture on Query Processing

Principal engineer at Oracle Zurich
Formerly professor at Ecole Polytechnique Paris

74

Reading material

Row stores (material of CS300). Read one of:

— COW Book. Chapters 7.3-7 & 8 (2" ed) or Chapters 8 & 9.7-7 (3" ed)

— Database System Concepts, sixth edition. (Chapters 13.1-3, 13.5 + 14.1-9)

D. Abadi et al.: The Design and Implementation of Modern column store Database System:s.
Foundations and Trends in Databases, vol. 5, no. 3, pp. 227-263 only, 2013. Available online at:
stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf

A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001
https://blog.twitter.com/engineering/en us/a/2013/dremel-made-simple-with-parqguet.html

Optional readings

e Theremainder of: “The Design and Implementation of Modern column store Database
Systems”

e |. Alagiannis, S. Idreos, A. Ailamaki: H20: A hands-free adaptive store. SIGMOD’14. Available
online at: http://dl.acm.org/citation.cfm?doid=2588555.2610502

e Joy Arulraj, Andrew Pavlo: How to Build a Non-Volatile Memory Database Management System.
SIGMOD 2017, Tutorial

75

https://stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf
https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet.html
http://dl.acm.org/citation.cfm?doid=2588555.2610502

	course intro
	Slide 1: CS460 Systems for Data Management and Data Science
	Slide 2: Data: an extremely valuable resource
	Slide 3: What is data?
	Slide 4: What is a database?
	Slide 5: What is a Database Management System (DBMS)?
	Slide 6: What does a DBMS do?
	Slide 7: Data-intensive applications & systems
	Slide 8: Data science
	Slide 9: Debunking some myths
	Slide 10: Data science’s raison d’existence: its applications
	Slide 11: The many faces of data science
	Slide 12: CS460 landscape
	Slide 13
	Slide 14: CS460 learning experience
	Slide 15: TA/AE Team
	Slide 16: Course logistics
	Slide 19: Data moves to the Cloud
	Slide 20: How much data are we talking about?
	Slide 21: Scalability
	Slide 22: Today’s topic
	Slide 23: (Simplified) DBMS Architecture
	Slide 24: Today’s topic
	Slide 25: Storage Management: Outline

	Storage technologies
	Slide 26: Storage Hierarchy
	Slide 27: Storage layer access times
	Slide 28: A surprisingly simple model for cache organization
	Slide 29: Non-Volatile Memory vs Solid-State Drive
	Slide 30: Storage Management: Outline
	Slide 31: From tables/rows to files/pages
	Slide 32: File Storage
	Slide 33: Alternative File Organizations
	Slide 34: Heap (Unordered) Files
	Slide 35: Heap File Implemented Using Lists
	Slide 36: Heap File Using a Page Directory
	Slide 37: Log-structured files
	Slide 38: Writing to log-structured files
	Slide 39: Reading from log-structured files
	Slide 40: Reading from log-structured files
	Slide 41: Net-net of log-structured files

	buffer management
	Slide 42: Storage Management: Outline
	Slide 43: Can’t we just use the OS buffering?
	Slide 44: Buffer Management in a DBMS
	Slide 45: When a Page is Requested ...
	Slide 46: More on Buffer Management
	Slide 47: Buffer Replacement Policy
	Slide 48: LRU Replacement Policy
	Slide 49: Sequential Flooding – Illustration
	Slide 50: “Clock” Replacement Policy

	Page Layouts
	Slide 51: Storage Management: Outline
	Slide 52: The N-ary Storage Model
	Slide 53: Record Formats: Fixed-Length
	Slide 54: Page Format: Fixed-Length Records
	Slide 55: Record Formats: Variable-Length
	Slide 56: Page Format: Variable-Length Records
	Slide 57: Variable-Length Records: Issues
	Slide 58: Storage Management: Outline
	Slide 59: Decomposition Storage Model (DSM)
	Slide 60: DSM Page Format
	Slide 61: Column store (DSM): example
	Slide 62: Column store (DSM) Properties
	Slide 63: Compression
	Slide 64: Compression (2)
	Slide 65: Compression (3)
	Slide 66: Compression (4)
	Slide 67: Operators over compressed data
	Slide 68: DSM: Writes
	Slide 69: Write-optimized storage
	Slide 70: Storage Management: Outline
	Slide 71: Partition Attributes Across (PAX)
	Slide 72: PAX Americana
	Slide 73: Conclusion
	Slide 74: Next week
	Slide 75: Reading material

