
CS460
Systems for Data Management and 

Data Science 

Prof. Anastasia Ailamaki
Prof. Anne-Marie Kermarrec

Introduction and Storage Management

February 17, 2025

CS460 1



Data: an extremely valuable resource

CS460 2



Database

What is data?

• Facts 
• Basis for reasoning/discussion/ 

calculation
• Useful or irrelevant or 

redundant
• Must be processed to be 

meaningful

Data Information

• Has meaning
• Relevant to the 

problem
• Actionable – leads to a 

solution

Organized, 

Processed

Knowledge
Wisdom

Organized, Processed

3



• A large, integrated, structured collection of data

• Usually intended to model some real-world enterprise

• Example: University

– Courses

– Students

– Professors

– Enrollment

– Teaching

Entities

Relationships

4

What is a database?

Relationships



What is a Database Management System 
(DBMS)? 

• A software system designed to store, manage, and facilitate access to databases

• DBMS = Interrelated data (database) +  set of programs to access it (software)

5



Concurrency
control

Protects data 
from failures: 

h/w, s/w, 
power; 

malicious users

Physical data 
independence, 

declarative high-level 
query languages

Provides  efficient, reliable, convenient, and
safe multi-user storage of and access to

massive amounts of persistent data.

reliable convenient
safe multi-user

massive persistent

efficient

Extremely large
(often Exabytes every day)

Data outlives the programs 
that operate on it

Thousands of queries / 
updates per second

24X7 
availability

6

What does a DBMS do?



Data-intensive applications & systems

• Data-intensive vs compute-intensive
• Volume, complexity, velocity, volatility, variety…

• Hardware/software codesign
– Optimizing for memory hierarchy, and hardware accelerators 

• Scientific applications

CS460 7



Data science

CS460 8

A data-driven approach to problem solving by analyzing and 
exploring large volumes of possibly multi-modal data.

It involves collecting, preparing, managing, processing, analyzing, and 
explaining the data and analysis results.

Data science is interdisciplinary (statistics, computer science, 
information science, mathematics, social science, visualization, etc.).



Debunking some myths

• Data Science <> Big Data

• Data science <> Machine Learning

CS460 9

Related but not the same!



Data science’s raison d’existence: its applications

CS460 10

Fraud  and Risk detection

Recommendation 
Systems

Digital advertisement

Image and speech 
recognition

Gaming

Healthcare

Smart cities

Sustainability

Real 
Time

Accuracy

Scalability

Latency

Security/
Privacy

Failure 
Resilience

Finance

Augmented reality



The many faces of data science

CS460 11

Data  analytics

Data exploration (mining) 
Models and algorithms 
(ML)
Visualizations

Data  Security / Privacy

Data integrity
Differential privacy
Cryptography

Data Ethics

Biases (data and 
algorithms)
Impact on society
Regulations

Data engineering

Big data management
Data preparation
Large-scale deployment

CS460



CS460 landscape

12

Consistency protocols
CAP Theorem

Gossip Protocols

Distributed/decentralized 
systems

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distributed 
File Systems

(GFS)

NoSQL DB
(Dynamo 
Big Table 

Cassandra)

Distributed 
Messaging 

systems 
(Kafka)

Structured 
Data

(Spark SQL)

Graph Data
(Pregel, GraphLab, 
X-Streem, Chaos)

Machine 
Learning

Batch Data 
(Map Reduce, 
Dryad, Spark)

Streaming Data
(Storm, Naiad, Flink, Spark 

Streaming Google Data Flow)

Scheduling (Mesos, YARN)Query optimization

Storage 
Hierarchies 

& Data 
Layout

Transaction
Management

Query 
Execution

CS460



CS460 13

Week Date Topic

1 17/02 Introduction and Storage hierarchy

2 24/02 Query execution

3 03/03 Query Optimization

4 10/03 Transactions

5 17/03 Distributed transactions

6 24/03 Distributed Query Execution

7 31/03 Midterm exam (not graded)

8 7/04 Gossip Protocols

9 14/04 Distributed hash tables + consistency models

10 28/04 Key-value stores + CAP theorem

11 5/05 Scheduling

12 12/05 Stream Processing

13 12/05 Distributed Learning Systems

14 19/05 Invited Industry Lecture



CS460

CS460 learning experience

14

Lecture

Learn the internals of 
a (distributed) 
platform for data 
science

Breadth coverage

Exercises

Put the  course in 
practice

Programming 
skills

Exam preparation

Background for 
the project

Project

Acquaintance with a real 
platform

Going in depth  

Intended as a practical 
work 

May not be related to 
every part of the course
 



CS460

TA/AE Team

15

Hamish (TA)
Martijn 

(head TA)

Yi (TA) Mathis (TA) 

Diana (TA)Milos (TA)

Mathis (TA) 

Elif (AE) 

Jakob (AE) 

Alex (AE) 

Rishi (TA) 



Course logistics

•CS460 Moodle: all the material, updated every week

•Schedule

• Lecture (Monday 2:15-4 pm) – CE12

• Exercises (Monday 4:15-6 pm) – CE12 (week 1: project overview)

• Individual Project  (Tuesday 11-1pm: indicative time slot to work on the project)

•Grading scheme

• Project (40%) (presentation at 16:15 today)

• Midterm exam (not graded, highly recommended, covers weeks 1-5)

• Final exam (60%)

CS460 16



Data moves to the Cloud

CS460 19

In 2021, cloud workloads 
represent 94% of all IT 
workload worldwide

FB spent 16Bn $ on datacenter in 2019
Google spent 13Bn $ datacenter in 2019

Hyperscale datacenters  (fitting more IT in 
less space, scale hugely and quickly to 
increasing demand  (elasticity, computing 
ability, memory, networking 
infrastructure, disaggregated storage) 
have been growing  at a historic rate over 
the past 10 years



0

20

40

60

80

100

120

140

160

180

200

D
a

ta
 s

iz
e

 (
Z

B
)

explore data efficiently

Data Age 2025, data from IDC Global DataSphere, Nov 2018 

33% of data is inaccurate in some way

Processing technology grows much slower than data

How much data are we talking about?



Scalability

• What if your system grows from 50,000 concurrent users to 10M

• Scalability: ability to cope with increasing load

• Load: number of requests/second, ratio of reads/writes in a 
database, number of simultaneously active users…

• Performance metrics
• Latency/Response time: duration for a request to be handled
• Average versus percentiles

• The 95th: response time at which 95% of requests are faster than that threshold

• Tail latency: refers to high latencies that clients see fairly infrequently

CS460 21



Consistency protocols
CAP Theorem

Gossip Protocols

Distributed/Decentralized 
systems

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distributed 
File Systems

(GFS)

NoSQL DB
Dynamo 
Big Table 

Cassandra

Distributed 
Messging 
systems 

Kafka

Structured 
Data

Spark SQL

Graph Data
Pregel, GraphLab, 
X-Streem, Chaos

Machine 
Learning

Batch Data 
Map Reduce, 
Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark 

Streaming Google Data Flow

Scheduling (Mesos, YARN)Query optimization

Storage 
Hierarchies 

& Data 
Layout

Transaction
Management

Query 
Execution

22

Today’s topic



(Simplified) DBMS Architecture

23

Recovery 

Manager

Transaction 

Manager Files and Access Methods

Buffer Management

Parser + Optimizer +

Plan Execution

Web 
Forms

Application 
Front Ends

SQL 
Interface

SQL Commands

Storage Management

Data



Today’s topic

24

Buffer Management

Storage Management

Data



Storage Management: Outline

– Storage Technologies
– File Storage
– Buffer Management (refresher)
– Page Layout

• NSM, aka row store
• DSM, aka column store
• PAX, hybrid

25



Storage Hierarchy

26

Network Storage

HDD

SSD

DRAM

CPU Caches

CPU
Registers

Faster
Smaller

Slower
Larger



Storage layer access times

27

Network Storage

HDD

SSD

DRAM

CPU Caches

CPU
Registers

Faster
Smaller

Slower
Larger~30,000,000 ns

100 ns

L2: 7 ns
L1: 0.5 ns

150,000 ns

10,000,000 ns

Layers often 
disaggregated →
access times vary!



A surprisingly simple model for cache organization

28

Multi-level
cache

Main Memory

L3 Cache (Unified)

L2 Cache (Unified)

CPU Core

Registers

L1 Cache 

Average access time (AAT)=
Hit time + 
((miss rate) X (miss penalty))

Hit timecache< Hit timememory

AATcache<< AATmemory



Non-Volatile Memory vs Solid-State Drive

29

DRAM

NVM

SSD

• Goals: data persists after power-cycle + reduce random/sequential access gap
• No seek/rotational delays

• Like DRAM, low-latency loads and stores
• Like SSD, persistent writes and high density
• Byte-addressable

DRAM

NVM

SSD

• SSD technology uses non-volatile flash chips
Package multiple flash chips into a single closure

• SSD controller
Embedded processor that executes firmware-level software
Bridges Flash chips to the SSD input/output interfaces

• Block-addressable



Storage Management: Outline

– Storage Technologies
– File Storage
– Buffer Management (refresher)
– Page Layout

• NSM, aka row store
• DSM, aka column store
• PAX, hybrid

30



From tables/rows to files/pages

31

Students

sid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 3.2

… … … … …

Storage

…

Files
…

…

Pages

Records
/ Tuples

File

Page

Fields

GOAL: DBMS must efficiently manage datasets larger than available memory



File Storage

The DBMS stores a database as one or more files on disk.

The Storage Manager is responsible for maintaining a database’s 
files and organizes them as a collection of pages.

– Tracks data read/written to pages
– Tracks available space

32



Alternative File Organizations

The Storage Manager is responsible for maintaining a database’s files 
and organizes them as a collection of pages.
Many alternatives exist, each good for some situations, and not so 
good in others. Indicatively:

• Heap files: Best when typical access is a full file scan 

• Sorted Files:  Best for retrieval in an order, or for retrieving a ‘range’ 

• Log-structured Files: Best for very fast insertions/deletions/updates

33



Heap (Unordered) Files

• Simplest file structure
– contains records in no particular order
– Need to be able to scan, search based on rid

• As file grows and shrinks, disk pages are allocated and de-
allocated.
– Need to manage free space



Heap File Implemented Using Lists 

• <Heap file name, header page id> stored somewhere
• Each page contains 2 ‘pointers’ plus data.
• Manage free pages using free list

– What if most pages have some space?

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Pages with
Free Space

Full Pages…

…



Heap File Using a Page Directory

• The directory is a collection of pages
– linked list implementation is just one alternative.

• The entry for a page can include the number of free bytes on the page.
– Much smaller than linked list of all HF pages!

Data
Page 1Header

Page

DIRECTORY

Data
Page 2

Data
Page N



Log-structured files

Instead of storing tuples in pages, the DBMS only appends log 
records. Blocks are never modified.

For workloads with many small files, a traditional file system 
needs many small synchronous random writes, whereas a log-
structured file system does few large asynchronous sequential 
transfers.

37



Writing to log-structured files
– Inserts: Store the entire tuple
– Deletes: Mark tuple as deleted
– Updates: Store delta of just the attributes that were modified

38

Log File

INSERT id=1,val=a

INSERT id=2,val=b

DELETE id=4

INSERT id=3,val=c

UPDATE val=X (id=3)

…



Reading from log-structured files
– DBMS scans log backwards, and “recreates” the tuple

39

Log File

INSERT id=1,val=a

INSERT id=2,val=b

DELETE id=4

INSERT id=3,val=c

UPDATE val=X (id=3)

…



Reading from log-structured files
– DBMS scans log backwards, and “recreates” the tuple
– Build indexes to allow jumps in the log
– Periodically compact the log

40

id=1

id=2

id=3

id=4

Log File

INSERT id=1,val=a

INSERT id=2,val=b

DELETE id=4

INSERT id=3,val=c

UPDATE val=X (id=3)

…



Net-net of log-structured files

• Advantages
– High performance for inserts, deletes and updates
– Ultra-fast recovery from failures
– Good for SSD as writes are naturally leveled

• Disadvantages
– Unpredictable performance in sequential reads
– Need a lot of free space
– Affects garbage collection (need for compaction)
– Data can be lost if written but not checkpointed

• DBMS needs to address two issues
– How to reconstruct tuples from logs efficiently
– How to manage disk space with ever-growing logs

41



Storage Management: Outline

– Storage Technologies
– File Storage
– Buffer Management (refresher)
– Page Layout

• NSM, aka row store
• DSM, aka column store
• PAX, hybrid

42



Can’t we just use the OS buffering?

• Layers of abstraction are good … but:
– Unfortunately, OS often gets in the way of DBMS

• DBMS needs to do things “its own way”
– Specialized prefetching
– Control over buffer replacement policy

• LRU not always best (sometimes worst!!)
– Control over thread/process scheduling

• “Convoy problem” 
– Arises when OS scheduling conflicts with DBMS locking

– Control over flushing data to disk
• WAL protocol requires flushing log entries to disk

43



Buffer Management in a DBMS

• Data must be in RAM for DBMS to operate on it!
• Buffer manager hides the fact that not all data is in RAM (just like hardware cache 

policies hide the fact that not all data is in the caches)
44

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy



When a Page is Requested ...

• Buffer pool information table contains:                                                   
<frame#, pageid, pin_count, dirty>   

   
• If requested page is not in pool:

– Choose a frame for replacement                   
   (only un-pinned pages are candidates)

– If  frame is “dirty”, write it to disk
– Read requested page into chosen frame

• Pin the page and return its address.  

45

* If requests can be predicted (e.g., sequential scans)
  pages can be pre-fetched several pages at a time!



More on Buffer Management

• Requester of page must unpin it, and indicate whether page 
has been modified: 
– dirty bit is used for this.

• Page in pool may be requested many times, 
– a pin count is used.  A page is a candidate for replacement iff pin count = 0 

(“unpinned”)

• CC & recovery may entail additional I/O when a frame is 
chosen for replacement

46



Buffer Replacement Policy

• Frame is chosen for replacement by a replacement policy:
– Least-recently-used (LRU), MRU, Clock, etc.

• Policy can have big impact on # of I/O’s; depends on the access 
pattern.

47



LRU Replacement Policy

• Least Recently Used (LRU)
– for each page in buffer pool, keep track of time last unpinned
– replace the frame which has the oldest (earliest) time
– very common policy: intuitive and simple

• Problem: Sequential flooding  
– LRU + repeated sequential scans.
– # buffer frames < # pages in file means each page request causes an I/O.  MRU 

much better in this situation (but not in all situations, of course).

48



Sequential Flooding – Illustration

49

1 2 3 4 5 6 1 2

BUFFER POOLLRU: MRU:

Repeated scan 
of file …

BUFFER POOL

1 2 43

5 2 43

5 6 43

5 6 41

5 6 21

1 2 43

1 2 53

1 2 63

1 2 63

1 2 63

3 4 5 6

5

1 2 3 4

6

1

2



“Clock” Replacement Policy

• An approximation of LRU.
• Arrange frames into a cycle, store
    one “reference bit” per frame
• When pin count goes to 0, reference bit set on.
• When replacement necessary:

 do {

  if (pincount == 0 && ref bit is off)

   choose current page for replacement;

  else if (pincount == 0 && ref bit is on)

   turn off ref bit;

  advance current frame;

 } until a page is chosen for replacement;

50

A(1)

B(p)

C(1)

D(0)



Storage Management: Outline

– Storage Technologies
– File Storage
– Buffer Management (refresher, slides on moodle)
– Page Layout

• NSM, aka row store
• DSM, aka column store
• PAX, hybrid

51



The N-ary Storage Model

• Page = collection of slots
• Each slot stores one record

– Record identifier: <page_id, slot_number>
– Option 2: <uniq> -> <page_id, slot_number>

• Page format should support
– Fast searching, inserting, deleting

• Page format depends on record format
– Fixed-Length
– Variable-Length

52



Record Formats: Fixed-Length

• Schema is stored in system catalog
– Number of fields is fixed for all records of a table
– Domain is fixed for all records of a table

• Each field has fixed length
• Finding ith field is done via arithmetic.

53

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2



Page Format: Fixed-Length Records

• Record id = <page id, slot #>
• In the packed case, moving records for free space management changes 

rid; maybe unacceptable.

54



Record Formats: Variable-Length

• Array of field offsets is typically superior
– Direct access to fields 
– Clean way of handling NULL values

55

$ $ $ $

Fields Delimited by Special Symbols

F1                F2                F3               F4

F1  F2    F3    F4

Array of Field Offsets



Page Format: Variable-Length Records

56

• Need to move records in a page
• Allocation/deletion must find/release free space

• Maintain slot directory with <record offset, record length> pairs
• Records can move on page without changing rid
• Useful for freely moving fixed-length records (ex:  sorting)

Slot Array

Data



Variable-Length Records: Issues

• If a field grows and no longer fits?
– shift all subsequent fields

• If record no longer fits in page?
– Move a record to another page after modification

• What if record size > page size?
– Limit allowed record size

57



Storage Management: Outline

– Storage Technologies
– File Storage
– Buffer Management (refresher)
– Page Layout

• NSM, aka row store
• DSM, aka column store
• PAX, hybrid

58



Decomposition Storage Model (DSM)

59



DSM Page Format

60

Decompose a relational table to sub-tables per attribute



Column store (DSM): example

• Columns stored in pages
– Denoted with different colors

• Each column can be accessed 
individually
– Pages loaded only for the desired attributes

61

Name

John

Jack

Jane

George

Wolf

Maria

Andy

Ross

Jack

Age

22

19

37

43

51

23

56

22

63

Dept

HR

HR

IT

FIN

IT

HR

FIN

SALES

FIN

Three different files:    tbl1.name  tbl1.age     tbl1.dept

tbl1



Column store (DSM) Properties

Pros
• Saves IO by bringing only the relevant attributes
• (Very) memory- compressing columns is typically easier

Cons
• Writes more expensive
• Need tuple stitching at some point (Tuple Reconstruction)
• Indexed selection with low selectivities
• Queries that require all or most of the attributes

62



• Lossless compression 
• IO reduction implies less CPU wait time

– Introduces small additional CPU load on otherwise idle CPU

• Run-length encoding (RLE): a lossless compression algorithm
– sequences of redundant data are stored as a single data value

Compression

63

Dept

HR

HR

SALES

IT

IT

CDept

(2 x HR)

(1 x SALES)

(2 x IT)



Compression (2)

• Bit-vector encoding: compact and constant-time test
– Useful when we have categorical data & Useful when a few distinct values 
– One bit vector for each distinct value
– Vector length = # distinct elements

64

Dept

HR

HR

SALES

IT

IT

HR   SALES   IT

1

1

0

0

0

0

0

1

0

0

0

0

0

1

1



Compression (3)

• Dictionary encoding
– Replace long values (e.g., strings) with integers

65

Dept

HR

IT

HR

SALES

HR

FINANCE

FINANCE

IT

Dictionary

1 HR

2 IT

3 SALES

4 FINANCE

CDept

1

2

1

3

1

4

4

2



Compression (4)
• Frequency partitioning

– Reorganize each column to reduce entropy at each page

66

Dept

HR

IT

FIN

FIN

HR

HR

FIN

HR

SALES

Dept

1 HR

5 HR

6 HR

8 HR

2 IT

3 FIN

4 FIN

7 FIN

9 SALES

CDept

1 1

5 1

6 1

8 1

2 1

3 2

4 2

7 2

9 1

Column
reorganization

Dictionary-
based

compression

with per-page 
dictionaries

Smaller dictionaries improve - memory requirements
  - cache utilization
  - effectiveness of run-length encoding



Operators over compressed data

No need to decompress for most query operators

• Dictionary encoding => integer comparisons faster than string 
comparisons

SELECT name FROM tbl WHERE DEPT=“HR”
vs

SELECT name FROM tbl WHERE CDEPT=1

– Per-page dictionaries?

• Bit-vector encoding => find the 1’s directly from the bit vectors
SELECT COUNT(*) FROM tbl WHERE CDEPT=“HR”

• Run-length encoding => batch processing (aggregation)



DSM: Writes

• Row insertions/deletions
– Affects all columns
– Multiple I/Os
– Complicated transactions

• Deletes/updates: Implicit
– Mark record as deleted!

• Massive data loading: Write-optimized storage (WOS)

68

Name

John

Jack

Jane

Age

22

19

37

Dept

HR

HR

IT

tbl1



Write-optimized storage

Batch-loading:
• <Jill, 24, IT>
• <James, 56, FIN>
• <Jessica, 34, IT> 

69

Name

John

Jack

Jane

Jake

Age

22

19

37

43

Dept

HR

HR

IT

FIN

Name

Jill

James

Jessica

Age

24

56

34

Dept

IT

FIN

IT

In-memory buffer (fixed-size) Filesystem storage: 3 different 
files, possibly compressed!

Jill

James

Jessica

24

56

34

IT

FIN

IT
Flush out

Write rows in-memory, flush columns to disk



Storage Management: Outline

– Storage Technologies
– File Storage
– Buffer Management (refresher)
– Page Layout

• NSM, aka row store
• DSM, aka column store
• PAX, hybrid

70



Partition Attributes Across (PAX)

71

Decompose a slotted-page 
internally in mini-pages per 
attribute
✓ Cache-friendly
✓ Compatible with slotted-pages
✓ Retain NSM I/O pattern

✓ reduces column “stitching” delay
✓ No per-column tuple ids

✓ Brings only relevant attributes to 
cache



PAX Americana 

• DSM most suitable for analytical queries, but required major 
rewrites of existing DBMS, and penalized transactions a lot.

• PAX replaces NSM in-place
– MonetDB/X100 (Vectorwise)
– Oracle Exadata, Snowflake, Google Spanner, etc.
– Data lake-oriented file formats

• Parquet
• Arrow
• …

72



Conclusion

• One size does not fit all
Each storage technology favors a different storage layout
Different workloads require different storage layouts and data 
access methods

• To optimize use of resources and algorithms, we need to know 
the workload (unrealistic)

New way of building systems: JIT/code generation/virtualization

73



Next week

Principal engineer at Oracle Zurich
Formerly professor at Ecole Polytechnique Paris

74

Dr. Angelos Anadiotis will lecture on Query Processing



Reading material
• Row stores (material of CS300). Read one of: 

– COW Book. Chapters 7.3-7 & 8 (2nd ed) or Chapters 8 & 9.7-7 (3rd ed) 
– Database System Concepts, sixth edition. (Chapters 13.1-3, 13.5 + 14.1-9)

• D. Abadi et al.: The Design and Implementation of Modern column store Database Systems. 
Foundations and Trends in Databases, vol. 5, no. 3, pp. 227-263 only, 2013. Available online at: 
stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf

• A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001
• https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet.html

Optional readings
• The remainder of: “The Design and Implementation of Modern column store Database 

Systems”
• I. Alagiannis, S. Idreos, A. Ailamaki: H2O: A hands-free adaptive store. SIGMOD’14. Available 

online at: http://dl.acm.org/citation.cfm?doid=2588555.2610502
• Joy Arulraj, Andrew Pavlo: How to Build a Non-Volatile Memory Database Management System. 

SIGMOD 2017, Tutorial 

75

https://stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf
https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet.html
http://dl.acm.org/citation.cfm?doid=2588555.2610502

	course intro
	Slide 1: CS460 Systems for Data Management and Data Science 
	Slide 2: Data: an extremely valuable resource
	Slide 3: What is data?
	Slide 4: What is a database?
	Slide 5: What is a Database Management System (DBMS)? 
	Slide 6: What does a DBMS do?
	Slide 7: Data-intensive applications & systems
	Slide 8: Data science
	Slide 9: Debunking some myths
	Slide 10: Data science’s raison d’existence: its applications
	Slide 11: The many faces of data science
	Slide 12: CS460 landscape
	Slide 13
	Slide 14: CS460 learning experience
	Slide 15: TA/AE Team
	Slide 16: Course logistics
	Slide 19: Data moves to the Cloud
	Slide 20: How much data are we talking about?
	Slide 21: Scalability
	Slide 22: Today’s topic
	Slide 23: (Simplified) DBMS Architecture
	Slide 24: Today’s topic
	Slide 25: Storage Management: Outline

	Storage technologies
	Slide 26: Storage Hierarchy
	Slide 27: Storage layer access times
	Slide 28: A surprisingly simple model for cache organization
	Slide 29: Non-Volatile Memory vs Solid-State Drive
	Slide 30: Storage Management: Outline
	Slide 31: From tables/rows to files/pages
	Slide 32: File Storage
	Slide 33: Alternative File Organizations
	Slide 34: Heap (Unordered) Files
	Slide 35: Heap File Implemented Using Lists 
	Slide 36: Heap File Using a Page Directory
	Slide 37: Log-structured files
	Slide 38: Writing to log-structured files
	Slide 39: Reading from log-structured files
	Slide 40: Reading from log-structured files
	Slide 41: Net-net of log-structured files

	buffer management
	Slide 42: Storage Management: Outline
	Slide 43: Can’t we just use the OS buffering?
	Slide 44: Buffer Management in a DBMS
	Slide 45: When a Page is Requested ...
	Slide 46: More on Buffer Management
	Slide 47: Buffer Replacement Policy
	Slide 48: LRU Replacement Policy
	Slide 49: Sequential Flooding – Illustration
	Slide 50: “Clock” Replacement Policy

	Page Layouts
	Slide 51: Storage Management: Outline
	Slide 52: The N-ary Storage Model
	Slide 53: Record Formats: Fixed-Length
	Slide 54: Page Format: Fixed-Length Records
	Slide 55: Record Formats: Variable-Length
	Slide 56: Page Format: Variable-Length Records
	Slide 57: Variable-Length Records: Issues
	Slide 58: Storage Management: Outline
	Slide 59: Decomposition Storage Model (DSM)
	Slide 60: DSM Page Format
	Slide 61: Column store (DSM): example
	Slide 62: Column store (DSM) Properties
	Slide 63: Compression
	Slide 64: Compression (2)
	Slide 65: Compression (3)
	Slide 66: Compression (4)
	Slide 67: Operators over compressed data
	Slide 68: DSM: Writes
	Slide 69: Write-optimized storage
	Slide 70: Storage Management: Outline
	Slide 71: Partition Attributes Across (PAX)
	Slide 72: PAX Americana 
	Slide 73: Conclusion
	Slide 74: Next week
	Slide 75: Reading material


